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Abstract. A least-squares curve-fitting program in which calculations of surface wave dis- 
persion are used has been developed in order to compute an interpretation of empirical dis- 
persion data in terms of a layered model of the earth. Input may consist of dispersion data 
(phase velocity versus wave period) for both Love and Rayleigh waves in any modes of 
propagation. Output consists of successive approximations of the values of parameters such as 
layer thicknesses, shear velocities, and densities which minimize the mean square of residuals 
of the empirical data with respect to theoretical dispersion curves calculated from the parame- 
ters. Tests made by applying the method to precisely computed theoretical dispersion curves 
demonstrate the validity of the method. In these, as many as six parameters of the original 
theoretical models are calculated under a wide varieW of conditions from the dispersion data 
only. In other cases, the amount of information obtainable may be greater or smaller, depend- 
ing on the quality of the input data. 

The New York-Pennsylvania dispersion data of Oliver et al. [1961] can be successfully inter- 
preted by using additional information from seismic refraction and studies of nearby earth- 
quakes in the area. A solution including the important effect of the mantle low-velocity chan- 
nel gives a crustal thickness of 38.6 km, a crustal shear velocity of 3.64 km/sec, a shear 
velocity of 4.685 km/sec below the M discontinuity, and a ratio of 2.86/3.30 between crustal 
and subcrustal density values. The density measurement is a new result. The shear velocity 
structure derived here is consistent with results obtained by Katz from seismic refraction 
profiles in the same area. Additional data are needed in order to derive more detailed informa- 
tion on crustal structure. 

INTRODUCTION 

This paper describes the first results obtained 
by an objective data-processing method for in- 
terpreting phase velocity dispersion data for 
Love and Rayleigh waves in terms of earth 
structures. In the following section the theory 
of this computation is defined. A program to 
implement this theory has been written a.nd 
tested in a large-scare digital computer. A pre- 
liminary report on this work was given earlier 
[Dorman and Ewing, 1962]. Numerical results 
discussed in the present paper have been ob- 
tained for problems concerned with interpreta- 
tion of the Rayleigh wa.ve dispersion data of 
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Oliver et al. [1961, hereinafter referred to as 
paper I] for the New York-Pennsylvania area. 

In recent years observations of surface wave 
dispersion have provided important data on 
the structure of the interior of the earth. The 

usual method of interpretation is an indirect 
trial-and-error procedure in which, by repetitive 
use of a method of computing the theoretical 
dispersion curves (phase velocity versus period) 
for hypothetical earth models, a theoretical dis- 
persion curve for a model is found that fits the 
observed data. Several theoretically exact meth- 
ods have been developed for making this disper- 
sion computation under quite general conditions 
[see Haskell, 1953; Sat6, 1959; Alterman et al., 
1959]. In studying the earth by means of sur- 
face wave dispersion data, however, the problem 
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to be solved is the inverse of the dispersion 
problem; i.e., to find from a given set of ob- 
served dispersion data the corresponding earth 
model. Apparently, all formal solutions of the 
surface wave inversion problem involve simplify- 
ing mathematieM approximations, and none have 
been applied extensively to experimental data. 
Nevertheless, it is important to note some the- 
oretical results. Knopo/• [1961] found, with re- 
gard to the difiqcult problem of uniqueness, that 
in the inversion of Love wave data 'any disper- 
sion curve can correspond to an infinity of pos- 
sible distributions of density and modulus.' It 
seems reasonable to suppose that this result 
applies to Rayleigh waves as well. This ex- 
plains the relative simplicity of finding an earth 
model corresponding to a single dispersion curve. 
A remaining question of great practicM im- 
portance, for which no theoretical answer has 
been given, is whether the ambiguity noted by 
Knopoff is removed by using simultaneous dis- 
persion data in more than one mode (Rayleigh 
and Love modes, fundamental and higher modes, 
etc.). No inversion theory has been offered pre- 
viously which permits use of simultaneous data 
in more than one mode. Moreover, the practical 
difiqculty of finding such a solution by triM-and- 
error inversion is very great. 

The purpose of this paper is to offer a method 
of finding the desired inverse solution on the 
basis of a known method of dispersion calcula- 
tion combined with the well-known technique 
of curve fitting by least-squares analysis. Ini- 
tially we have a set of experimentMly observed 
phase velocity dispersion data, and we assume a 
preliminary, approximate, layered earth model. 
The phase velocity for the model is then cal- 
culated theoretically by the method of Haskell 
matrices at the period of each observed phase 
velocity datum. Also, by dispersion calculations 
we obtain theoretical values of derivatives of the 

form Oc/Op, where c is a theoreticM phase veloc- 
ity and p is a parameter of a layered structure. A 
rectangular array of these derivatives is cal- 
culated which covers the phase velocities at the 
period of each observed phase velocity datum 
and covers each parameter that is to be evalu- 
ated. The array of derivatives is the matrix of 
coefficients of linear equations relating the de- 
sired parameter corrections to the differences 
between the corresponding theoretical and ob- 
served phase velocity values. Terms of order 

higher than the first are neglected. If the num- 
ber of equations or the number of observed data 
exceeds the number of parameters, as in the 
cases treated here, a least-squares evMuation of 
the parameter corrections is possible. After 
severM repetitions of this process the correc- 
tions approach zero. The running time required 
to perform this computation can be estimated by 
an expression given below. Problems described 
in this paper require between % minute and 3 
minutes per repetition on the IBM 7090. 

This inversion method replaces the trial-and- 
error selection of corrections. It produces re- 
sults which are exact in the sense that the earth 

parameters used in an exact theoretical calcula- 
tion o.f dispersion data can be recovered from a 
knowledge of the dispersion data alone. The 
method permits a survey of the possible in- 
terpretations of a given set of data which is 
more rapid, precise, and complete than can be 
made by trim and error. Also, by observing the 
performance of the calculation under various 
sets of constraining conditions, a practical eval- 
uation of the uniqueness question in each case 
can be made. The number of variables that can 

be evMuated simultaneously depends on the 
quality of the data. The number of modes ob- 
served, the breadth of the observed spectrum 
in each mode, and the small scatter of the data 
points are quahty factors which strongly affect 
the performance of the calculation. In the ex- 
amples given in this paper the results obtainable 
appear to be limited by the quality of the data 
rather than by the statistical method or nu- 
merical implementation of the method. 

The problems solved herein by means of the 
present inversion method are related to a study 
of the structure of the New York-Pennsylvania 
area using the Rayleigh wave phase velocity 
data of paper I. These dispersion data, covering 
periods between 16 and 45 seconds, were de- 
rived by the tripartite method from seismograms 
of four earthquakes recorded on matched long- 
period instruments at Palisades, New York; 
Waynesburg, Pennsylvania; and Ottawa, Can- 
ada. Fifty-eight data points used in this paper 
are those shown in Figure 7 of paper I. These data 
are also listed in Table 4 of this paper. The reader 
is referred to paper I for details of the derivation 
of these data. In paper I these data were inter- 
preted by trial-and-error inversion, the best 
solution being case 8123 for three crustal layers. 
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To test the performance of the inversion pro- 
gram when the answer is known exactly, several 
numerical problems described below were solved 
using dispersion data computed theoretically for 
a hypothetical layered structure and covering 
the same range of periods as the New York- 
Pennsylvania data. Results of these problems 
therefore indicate the optimum performance to 
be expected and the maximum amount of in- 
formation obtainable from the New York-Penn- 

sylvania data. In ideal problems with data like 
these it appears possible to recover at least 
four and perhaps six parameters in a single- 
layered crustal configuration. Uniqueness is 
strongly suggested in these theoretical problems 
by sucessful recovery of the correct values from 
several sets of initial conditions. In this context 

uniqueness is taken to mean the existence of only 
one solution (a set of parameters satisfying the 
least-squares condition) within the framework 
of layering provided in the initial case and within 
a considerable range of values of the parameters. 

The results of inversion calculations on the 

data of paper I show that models involving 
only one crustal layer can yield inversion solu- 
tions that are superior to case 8123 in the sense 
that their dispersion curves agree better with 
the experimental data. Also, some of these 
models agree well with I{atz's one-layer inter- 
pretations of crustal structure from seismic 
refraction profiles in the same region [Kaiz, 
1955]. On the other hand, in trying to find 
inversion solutions similar to case 8123, the 
rather large number of parameters required to 
describe three crustal layers apparently are 
not subject to a unique interpretation on the 
basis of present surface wave data only. 

Data of Ka•z [1955] on crustal and sub- 
crustal compressional velocities are used as fixed 
values throughout the calculations. Data of 
Lehmann on the shear velocity structure of the 
upper mantle in this region [see Lehmann, 1955, 
1961; Dorman et al., 1960] have been used in 
order to obtain more accurate results for crustal 

structure. The New York-Pennsylvania data do 
not contain long enough wavelengths to permit 
an independent determination of upper mantle 
structure; nevertheless, the longer wavelengths 
are affected significantly by the low-velocity 
channel of the Lehmann model. 

In a new paper Brune and Dotman [1963] 
have applied the numerical inversion method to 

the interpretation of data on Love and Rayleigh 
wave dispersion for the Canadian shield. These 
data have a broad spectrum, periods of 3 to 90 
seconds, and in addition carry information in a 
mode, the fundamental Love mode, that is not 
represented in the New York-Pennslyvania 
data. In the Canadian case, superior definition 
of the experimental curves is evidenced by the 
fact that the phase velocity residuals with re- 
spect to the dispersion curves for the final model, 
case CANSD, have an rms value of 0.015 km/ 
sec as compared with 0.040 km/sec in the New 
York-Pennsylvania case. These favorable cir- 
cumstances permit a more detailed and precise 
solution to be determined by the inversion cal- 
culation on the Canadian shield data and allow 

the program to perform in a way that is not as 
seriously limited by the quality of the data as 
in the New York-Pennsylvania case. In several 
computer runs covering different frequency 
bands it was possible to evaluate eight velocity 
parameters representing the structure of the 
crust and the mantle of the Canadian shield. 

The results show that information of consider- 

able geologic interest can be obtained from 
dispersion data by the method of numerical in- 
version in cases where good data are available. 

L•sT oF SYmBoLs 

hm, thickness in km of layer m. 
a,•, compressional velocity in km/see of layer 

m. 

/•, shear velocity in km/see of layer m. 
p•,, density in g/cm' of layer m. 
T, wave period in seconds. 
c, phase velocity in kin/sec. 
s, sample standard deviation of experimental 

phase velocities with respect to theoretical 
phase velocities, in kin/sec. 

n, a subscript indicating the index number of 
the bottom layer or half-space. 

e, a subscript applied to c or T above, indicat- 
ing an experimentally observed value. 

i, a subscript indexing the experimentally ob- 
served points. 

I, the total number of experimental points used 
in a particular problem. 

v, an active parameter which may be a particu- 
lar h, a, fi, or p. 

j, a subscript indexing the active parameters. 
J, the total number of active parameters used 

in a particular problem. 
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¾, the vector of J active parameters. 
dv, a correction to be added to an active param- 

eter. 

D, the vector of J corrections. 
P, a matrix of partial derivatives. It has I rows 

and J columns. 

C, a vector of residues. It has I elements. 

METHOD OF THE INVERSION CALCULATION 

Using the multilayer dispersion computation 
[Haskell, 1953; also see Dotman, 1962] we have 
written a subroutine which numerically evaluates 
the function 

c - f(T, h•, a•, l•, p•, he are 1•2, 02 '" , 

Crn, •n, p,•) (1) 

upon substitution of numerical values for the 
arguments enclosed in parentheses (see list of 
symbols). In this computation the earth is an 
elastic half-space of fiat homogeneous layers, 
the subscript n denoting the bottom, semi-in- 
finite medium. Experimental dispersion data are 
a set of observed wave periods together with 
corresponding observed phase velocities (T,•, ce•), 
( Te.•, c,•) , . . . , ( T,•, c,•) . If T in (1) is re- 
garded as the independent variable and the re- 
maining arguments are considered to be param- 
eters of the curve c versus T, the inversion 
problem can be stated as the problem of choos- 
ing the parameters so that differences between 
observed and theoretical phase velocities at ob- 
served periods satisfy the least-squares condition 

I 

•'• (c,, -- c,) • = minimum (2) 
i•=l 

where c, -- J(T,., .... ) from (1). If C is de- 
fined as a column vector which has I elements, 
c,• -- c,, then in matrix notation (2) can be 
written 

CC = minimum (2a) 

where the tilde dcnotes the transpose of a 
vector or a matrix. Thus the inversion problem 
is one of curve fitting, where the approximating 
function is (1) as defined by the multilayer cal- 
culation rather than a power series or some 
other commonly used function of statistics. When 
condition 2 is satisfied the parameters of the 
approximating function have direct physical 
significance as the description of the layered 
earth which best corresponds to the given dis- 

persion data. In a particular inversion problem 
a suitable form of the approximating function 
is chosen by selecting an appropriate number of 
layers, n, and by other options allowed in the 
digital computer program as described below. In 
the present form of the program n remains fixed 
throughout the execution of a problem. As is indi- 
cated in (1), the total number of parameters nec- 
essary for the multilayer computation is 4n -- 1, 
except for computa.tions on Love wave data 
exclusively, which require only 3n -- 1 param- 
eters, the compressional velocities being im- 
material. 

Since 4n -- 1 is usually too large a number of 
parameters to form a useful approximating func- 
tion, the inversion program has facilities for 
dividing the 4n -- 1 parameters into an 'active' 
and a 'passive' group at the option of the user. 
Assignment of a parameter to one of t.hese 
groups is made at the beginning of a problem 
and holds throughout. With an initial set of 
parameter values chosen according to available 
geophysical data, the active parameters are sub- 
ject to revision by the inversion program ac- 
cording to (2), while the passive parameters 
remain fixed at their initial values. 

Geophysical considerations serve to limit the 
number of parameters which are placed in the 
active group by eliminating those for which 
sparse information is available. In this paper, 
for instance, we will not attempt to evaluate 
layer compressional velocities, since surface 
waves are not very sensitive to them. Also, den- 
sities are less important than shear velocities 
and in some cases may be taken from an inde- 
pendent density versus depth law with little 
effect on shear velocity results. In many cases 
it will be useful to assume that the earth con- 

sists of n layers of fixed thicknesses, compres- 
sional velocities, and densities and to attempt 
to evaluate layer shear velocities only. In this 
case there would be n active parameters. Period 
equations for tlayleigh and Love waves can be 
expanded in a form in which a. particular layer 
density appears only as a ratio with the den- 
sity of an adjacent layer. Therefore, layer den- 
sities can be determined only to a common fac- 
tor, or, alternatively, n--1 layer densities at 
most can be determined independently. For data 
covering a rather limited spectrum, as in this 
paper, a common problem will be to determine 
the best crustal solution consisting of a single 
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surface layer overlying a half-space. This in- 
volves the evaluation of h,, /•, /•.o, and 
Thus in most problems the number of active 
parameters will be considerably less than 4n--1. 

The initial values of the active parameters, 
v, v,,..., v,, may be represented by the column 
vector, V. A set of corrections dv•, dye,..., dv•, 
denoted by the column vector, D, is sought so 
that, when V is replaced by V + D, (2) is 
satisfied. We will rewrite (1) as 

where the passive parameters are not mentioned 
explicitly as arguments. Thus c,: f( Te,, v•, v•, 
..., v•). A small increment, Ac•, at period Te• 
produced by a small increment Av• in v• can 
then be evaluated numerically using (la) as fol- 
lows: 

Acii = f(T,i, Vl, •)2, ß .. , 

Using partial derivatives evaluated at the pe- 
riod Te, we may write the following linear equa- 
tion of condition, relating the required correc- 
tions dv• to the observed residual c•, -- c,: 

Oc• Oc• Oc• 
Ov• dv• q- • dr2 q- '" Ov j dv j = ce i -- Ci 

(4) 

A similar equation of condition corresponding 
to each observed period can be formed. Then, 
using matrix notation, we write the I equations 
of condition as 

•D = c (4•) 

where P is the matrix of partial derivatives with 
I rows and J columns. D represents a column 
vector of J elements which are the dv•'s. From 
(4a) we can obtain the corresponding normal 
equations 

ß vi + avi,... , v•) -c, 
We then calculate the partial derivative of c at 
period T e• with respect to v• as 

Oc,/O• = ac•/a• (3) 

P PD = PC (5) 

These equations are solved for D. D is then the 
well-known least-squares solution of (4a) [see 
Margenau and Murphy, 1943, p. 500]. Thus 

TABLE 1 - CASE TH1 

DATA INITIAL 
PARAMETERS 

3•.ooooo 3•.ooooo .1t•ooo .1t•ooo 

•. 55000 3. t[5ooo 07•ooo 3.00000 
.20000 •.20000 

•. 65000 •. 75000 
3.3sooo 3.32ooo 

T C C•-C 
RAYNE I GH HOD E 

.•3o•o o.o2• 65 
ß •35 • o.o•;c 89 

8. .7•o8 o.o 

. . bo429 o. 2 • 

].saoo o.oe: 
o.oe,la 16.o 3.35025 0.08' 

l ST CORR 2ND CORR 3RD CORR 

q.000 1 q.000 1z•000 

e. 76118 7qo 14 7•ooo, 

8 2oooo •!eoooo 8:2oooo l,• 65113. 0;998 q. 65000 
3.32ooo ,3.32000 3.32ooo 

Ce-C C,-C C•-C 

o.oo3oe o.oooo2 o.ooooo 
o.oo•z o.oooo •. o.ooooo 
o.oo•;•6 -o.ooooo o.ooooo 
o.ooqE;q -o.oooo 1 o.ooooo 
o.ooq58• -o.ooooe o.ooooo 
0. O01•2 • -0. 00002 0. 00000 
o.oo37•6 -o.ooooe o.ooooo 
0.0030• -0.0000::, 0.00000 
0.00235 -0.00002 0.00000 
0 . O0167 -0. 0000 1 0.00000 
0 o00112 -0 o 00001 0 o00000 

RMS= 0.00000 0.06801 0.00358 OoOOOO• OOOOOOO 
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after the operation 

replace V by V -[- D (6) 

the function (la), formed with the new parame- 
ters V, satisfies (2) approximately. The deriva- 
tives (3) are themselves functions of c, and all 
the parameters. Therefore, linear equations of 
the type of (4a) are accurate only when the 
dv•'s are small. Repetition of the process repre- 
sented by (3), (4), (4a), (5), and (6), using the 
new values of the parameters as initial values, 
leads to a further approximation of the desired 
solution V. The function •C, which is calcu- 
lated after each correction, is minimized after 
a few repetitions. 

V is then a unique solution of the experi- 
mental dispersion data in the sense that there 
is no other vector in the local region of V which 
satisfies (2a) as well, subject to the given con- 
straints implicit in: (1) the number of layers 
chosen for the problem; (2) the particular divi- 
sion made between active and passive parame- 
ters; and (3) the fixed values adopted for the 
passive parameters. If the data and the con- 

straints are such that no unique solution V 
exists, the successive V's may wander through 
a series of values which are equally good in the 
sense that CC does not change significantly 
from one approximation to another. If the first 
moment of the residuals is very nearly zero, after 
minimizing •C, the final value of s = %/•C 
is properly termed the standard deviation of the 
sample and is a measure of the scatter of the 
experimental phase velocity data. Precision mea- 
sures for the elements of V are not calculated 

formally, but useful estimates of these can be 
made by physical considerations based on data 
produced by the inversion calculation, as shown 
in the cases below. 

I•UMERICAL CALCULATIONS 

A digital computer program to implement the 
above theory has been written and tested on 
the IBM 7090. Technical details of the program 
will not be discussed herein because the program 
is still undergoing revision. It is known at present 
that the portions involving the calculation of 
roots of the multilayer period equation and of 

TABLE 2 - CASE TH2 

INITIAL 1ST CORR 2ND CORR 3RD CORR 4TH CORR •TH CORR 

I 

•: •7ooo •0000 

• •ooo .76ooo 
p,• 3.53000 

Y C 
RAYLEIGH MODE 

DATA 
PARAMETERS 

,, ooooo .ooooo a, : 150OO 1•,000 15000 15000 : 15000 15009 1500,0 

o,OOO 7,.,.000 ooooo • : : , 
:ooooo 8 .ooooo 8• ooooo 8 .ooooo 8 8 ooooo .ooooo 
14000 8 14000 8.1•000 • ,4000 • 14000 8 ,4000 • 14000 4 • 70000 4 • 80000 4.70781 • 70213 • 69963 4 69954 • 70016, 

P_ha• lO•'3øøøø '3 øøøø o3OOOO 3ooo0 3oooo 3ø3oooo .30ooo ooooo oo.ooooo 00000 .00000 00000 Og ß 00000 00000 

4.02246 

o 96486 90522 

•7o3 

• •o97 665•7. 
3 58•97 

o5O579 •3399 
3.3?395 

4 o 
3:o 
32.0 

.0 
26.0 
24.0 
22.3 
20.0 
•8oO 
16.o 

RMS= 0.00000 

17000 8.17000 48.17000 8. 17000 8.17000 ,8. 17000 48:ROOO0 4 •oooo 4 •oooo o •o•OOOO ß •0000 . 4 •0000 

, •9.ooo •.9ooo 0•ooo • 9.ooo 8•oo •.9ooo 
4 7(:,000 070ooo 7•oo 76000 4.75000 .76ooo 
3.53000 3.53000 3•53000 3.53000 3o53ooo 3.53000 

C e -C C e -C C e -C C e -C Ce-C Ce-C 
0.00095 0.001'/1 -0.00001 0.00000 0o00000 -0.00001 
0o01631• 0.0029,3 0.00003 -o.00001 -0.00o01 0.00001 
0.0R301 0o003•7 0 00003 -0.o00o1 0.00o00 0.00000 
0.0•380 0.00397 0 o000• 0.0o00o 0.00000 0.0000• 
0.0558o 0 004 lO -0.00002 -0.00001 0.00000 O.000OO 
0.067•1 0.00398 -0.00006 -0.00OO1 O.00000 -0.00001 
o.o77•7 0.oo35 • -o.oooo9 0.ooooo OOOOOOO o.ooooo 
OoO8•7• o oo•9• -o.ooo09 -o.oooo• OoOOOO• -o.oooo• 
o.o88• o.oo• -o.oooo• o.ooooo o.oooo•. -o.oooo• o.o884• o oo• o.ooo:o o.ooooo o.ooooo -o.ooco• 
0o0870• 0.00124 0.00022 0.00001 -0.00005 -0.00001 

0006565 0.00308 0.00009 o.ooool 0.00002 o.ooool 
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the variable, s, are entirely correct and in agree- 
ment with previous programs. This is sufiScient 
to ensure the validity of any answer obtained 
which has a low value of s. The running time 
on the IBM 7090 required for each revision or 
iteration is approximately 0.015 (J + 1) tnI 
seconds, where n, I, and J have the same sig- 
nificance as was given above and t is the num- 
ber of trial solutions required to solve the phase 
velocity dispersion equation for c within c'10 -• 
km/sec at a particular period T. t is usually 
7 or 8. For example, problem Xp3, described be- 
low, required about 2 minutes per iteration and 
problem Thl required about 25 seconds .per 
iteration. The execution of some successful prob- 
lems is discussed below. 

Theoretical problem. Theoretical dispersion 
calculations were made for several crust-mantle 

models chosen as approximations of the struc- 
ture of the New York-Pennsylvania area. Ray- 
leigh wave phase velocity data for these models 

were computed in the same range of periods 
covered by the experimental New York-Penn- 
sylvania data. These theoretical dispersion data 
were then used as experimental data in inver- 
sion problems. In each problem four to six of 
the parameters of the structure were chosen as 
active parameters. The initial values of these 
parameters were displaced from the values used 
in computing the theoretical data while the re- 
maining, passive parameters retained their origi- 
nal values. Thus, the constraint.s of each problem 
were such that all the parameters of the siruc- 
ture could assume the values that were origi- 
nally used in the data calculation, provided that 
the inversion calculation produced the proper 
corrections for the active parameters. A satis- 
factory result was obtained in each of the three 
problems, Thl, Th2, and Th3, shown in Tables 
1, 2, and 3. 

Problem Thl, involving a single-layered crust 
overlying a half-space, is shown in detail in 

TABLE 3- CASE TH 3 

DATA 
PAR41•ETERS 

INITIAL 1ST CORR 2ND CORR 3RD CORR 11.TH CORR •TH CORR 

60667 1•.52196 1 .ooooo oOOOOO 6. •5ooo 6• •5ooo •. •5oqo •5ooo •5ooo 

: 7•ooo .ooooo 1.952 •o •. •72•3 A. 79o • : 7286•* 
1 .ooooo • ooooo •.ooooo •.ooooo 1•ooooo •.ooooo • .ooooo 

•5ooo 6.!5ooo 6.•5qoo 6.•5•oo 6.•59•o 6.•5ooo 6.•5o•o 3•55 ooo 3. •ooo e 75• 3.•3•o• 3.o2•Z 3.395• 3.•51•5. 

•.ooooo 8½.ooooo •.ooooo •.ooooo •.ooooo 8•.oooo0 •.ooooo 8.14ooo 8. • 4ooo 8. • 4ooo 8. • 4ooo 8. • 4ooo 8 • 4ooo 8. • 4ooo 

3-3oooo 3.3oooo 3.3oooo 3-3oooo 3.3oooo 3.3oooo 3.3oooo 
lOO.OOOOO •oo.ooooo •oo.ooooo •oo.ooooo •oo.ooooo •oo.ooooo •oo.ooooo 

8.•7ooo •7ooo •.•7ooo •7ooo •.•7ooo •.•7ooo •.•7ooo 
•oooo •oooo •oooo •.•oooo •.•oooo •oooo •.•oooo 

8•9ooo 8:•9ooo 8 •9ooo 8:•9ooo 8.•oo •9ooo 8:•9ooo • ½4ooo • ½4ooo •.½•ooo • ½4ooo •.•ooo • ½4ooo • ½•ooo 

4.76000 4.7•oo 4 • 7•oo 4,76ooo 4.76ooo •. 76ooo •. 7•oo 3.53ooo 3.53o0o 3.53ooo 3.53000 3.53ooo 3.53ooo 3.53ooo 
T C C-C 

RAYLEIGH MODE e 
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TABLE 4 - CASE XP1 

DATA 
PARAMETERS' 

ht 

T c 
RAYL E I OH MODE 

•..3 
1 
1 

•8,• 

1 

1 
20,0 
20.2 
20•4 
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21. : .q8 

21. 3. 

22.0 

2•. 
23. 2•.• ' 
2 . 

27.• 
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•7.[ 

2•.0 
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29.5 
29.,7 

3:8 

35.J 
35.4 

8o 
81 

88 

3.9 

,•5.3 .9• 45.9 i}.o 1 
RMS= 
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Table 1. The first two columns of the table list 

the experimental phase velocity data used in the 
problem and the layer parameters from which 
they were calculated. Column 3 lists the layer 
parameters of the initial assumed approximate 
solution and the residuals of phase velocities for 
this case with respect to the phase velocity data. 
Succeeding columns list the layer parameters and 
residuals for succeeding corrections to the in- 
itial solution which were obtained by the inver- 
sion program. The last line of the table gives 
rms residual, s, for each approximation. The 
program seeks a minimum of this quantity, and 
its decrease from column to column is a mea- 

sure of the convergence of the solution. Tables 
2 and 3, illustrating cases Th2 and Th3, are 
constructed similarly. In each table active pa- 
rameters are identified by asterisks at the ends 
of the proper rows. 

The structure used in problem Th2 has three 
layers overlying a half-space to represent the 
four regions: crust, upper mantle, low velocity 
channel, and deeper mantle. The active parame- 
ters chosen for this problem are h•, ]•, p•, and 
]•2. The layer configuration for problem Th3 is 
the same as for Th2 except that the top layer is 
split into two layers of identical properties. In 
this problem, six active parameters are chosen 
instead of four as in problems Thl and Th2. 

Experimental problems. The results of three 
experimental determinations of crustal structure, 
using structural configurations of increasing 
complexity, are shown in Tables 4, 5, and 6 as 
cases Xpl, Xp2, and Xp3, respectively. 

A similar configuration and the same active 

parameters are used in case Xpl as in Thl. 
Initial choices of all parameters were based ap- 
proximately on the data of Katz and on other 
geophysical data. Table 4 is similar in format to 
Table 1, with the exception that the lower parts 
of columns i and 2 of Table 4 contain, respec- 
tively, the periods and phase velocities of em- 
pirical data (from Figure 7, paper I) rather 
than theoretical data. The method of computing 
the data in column 3 and succeeding columns is 
identical to that used in the theoretical problems. 
In this case five revisions are enough to ap- 
proach a limiting value of s of 0.040 km/sec, 
which represents the scatter of the empirical 
data. 

Tables 5 and 6 contain an upper part and a 
last line in the format of Table 4, but the in- 
formation of the lower part of Table 4 is 
omitted. However, the experimentsJ points used 
in these cases are exactly the same as those 
shown in columns i and 2 of Table 4. 

The initial configuration of layers of case Xp2 
is similar to that of case Th2; i.e., it has a single- 
layered crust overlying a mantle with a low- 
velocity channel. p• is omitted from the active 
parameters as used in Xpl, but the deeper fixed 
layering approximates the effect of the low- 
velocity region more accurately than the simple 
half-space in Xpl. In five revisions s approaches 
the value 0.040 km/sec, very nearly the same 
value as in Xpl. But final values of the active 
parameters differ considerably from those 
reached in case Xpl, apparently owing to the 
effect of deeper layering. 

Case Xp3 starts from an initial configura- 

TABLE • - CASE XP2 

PARAMETERS 

RMS= 

INITIAL 

40 o 00000 
•o •ooo 
•.5o5oo o 70000 

84.00000 
8. 14000 
4.70000 
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TABLE 6- CASE XP 3 

DORMAN AND EWING 

INITIAL 1ST CORR 2ND CORR 
PARAMETERS 

h • 3•oOO000. 3•o772• C• 6o 15000 o 1.5000 • 
•, 3.55500 •.6501• 

3.ooooo •00000 •.00000 
• 8. • •ooo 8 • •ooo 

•.Soooo •7oo 
.oooo .ooooo o.ooooo 

,ooo :oooo oooo 
• •.•ooo • •kooo •• •'7•ooo :7•ooo •ooo •ooo 

• 3.53o co 3• 53ooo 
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8. • 4000 
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. •7ooo 
. •oooo 

'•.•ooo 
8.•9.ooo 
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48..56•55 49..o6478 4•..5o879. 
6.•5oog 6.•Sgop 6.•5ooo 
'•.71e25 3.71..g9• •.7oe5•, 
•.0 4441 g. 9U396 •. t4t• ß 
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•,20000 20000 • 20000 
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o.o4322 o.o4o31 oøo4o4o o.o4o1•; 

tion of layers very similar to that of case Xp2. 
In Xp3, however, p• is replaced in the group of 
active parameters. In Xp3 no limiting configura- 
tion is reached in the course of five revisions, al- 
though all corrections except the second have a 
standard deviation that is virtually identical to 
that reached as a limiting value in Xpl and 
Xp2. 

DISCUSSION 

The theoretical cases Thl, Th2, and Th3 
are a general test of this inversion method. The 
results demonstrate the feasibility of curve fit- 
ting by means of the period equation in cases 
of limited complexity for which good data are 
available. In all three experiments there is a 
strong tendency to converge to the known, cor- 
rect answer, although the results in Th3 are 
erratic except very near the correct solution. In 
Th3 all corrections except the first represent an 
improvement in s; in Thl and Th2 s decreases 
consistently to a limiting value of the order of 
10 -• km/sec. Convergence in Th3 is not as rapid 
as in Thl and Th2, indicating that trouble 
might be expected in a similar experimental 
problem for a two-layered crust. 

The results in Thl, Th2, a•d Th3 strongly 
suggest a unique relationship between the respec- 
tive dispersion curves and the velocity and den- 
sity structures involved. The apparent disagree- 
ment of this result with Knopoff's conclusion, 
quoted above, may probably be explained by the 
fact that, in these inversion experiments, varia- 
tions of density and shear velocity are permit- 

ted only in the form of one or two discontinui- 
ties rather than as arbitrary functions of depth, 
as in Knopoff's treatment of the problem. This 
distinction between the two methods may be of 
practical significas•ce, however. If one is satisfied 
to determine shear velocity in terms of constant 
values applied to homogeneous regions between 
a few discontinuities, the results of the present 
experiments show in principle that density struc- 
ture can be obtained simultaneously in the 
same form. This approach is worth while, since 
the ability to characterize the crust or upper 
mantle of a region objectively in terms of the 
shear velocities and densities of only a few lay- 
ers would be a definite advance in the present 
stage of seismic exploration. 

Finally, the theoretical problems show spe- 
cifically how the inversion program responds in 
problems similar to the New York-Pennsylvania 
problem. However, they differ from the usual 
experimental situation in that the data corre- 
spond exactly to a particular set of homogeneous 
layers and are not affected by experimental scat- 
ter. Nevertheless, these problems indicate that 
a simple approximation of crustal structure may 
be derived by applying the program to the ex- 
perimental New York-Pennsylvania dispersion 
data. 

In calculations on the data of paper I, the sim- 
plest configuration that can account for dis- 
persed Rayleigh waves, i.e., a one-layered crusœal 
model with homogeneous mantle, was used in 
Xpl. The standard deviation obtained in the 
fifth correction is the lowest in any experiment 
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with the New York-Pennsylvania data, and it 
therefore confirms the statistical validity of the 
result. The crustal density obtained does not 
fall in the range of physical values, however, and 
the velocity structure is inconsistent with Katz's 
results. On the other hand, a velocity structure 
in much better agreement with that derived by 
Katz from shear waves is obtained in Xp2 by 
the addition of a channel of the Lehmann type 
[see Dotman et al., 1960] represented by fixed 
layering in the mantle. This suggests that the 
model of the mantle low-velocity channel in 
Xp2 is approximately correct, although these 
data by themselves are not sufficient to eliminate 
the possibility of a different channel configura- 
tion, i.e., a channel of the Gutenberg type. Neg- 
lect of the channel effect on structural interpre- 
tations of dispersion data was mentioned in paper 
I as a source of serious errors in crustal studies 

in which the dispersion method is used. 
A further step, taken in Xp3, is an attempt 

to measure simultaneously one additional param- 
eter, crustal density, p•. In Xp2, p• -- 2.70 g/cm' 
was chosen arbitrarily. However, in problem 
Xp3, where p• is allowed to vary, it appears 
thai the number of active parameters is too large 
for a unique solution to be obtained in this 
configuration with the available data. Other at- 
tempted inversion interpretations involving ad- 
ditional layers and/or additional active param- 
eters behaved in a similar way. Table 6 shows 
the wide range of statistically valid solutions that 
were obtained in the various corrections of Xp3. 
The method of plotting these data in Figure 1 
(solid circles) shows that these solutions form 
a linear distribution. The solution of XD2, shown 
by the open circles in Figure 1, is unique with 
respect to its own constraints and is a member 
of the more general class of solutions of Xp3. 
The one-dimensional nature of the distribution 

of solutions in Figure 1 is emphasized by the 
fact that the points which fall farthest from 
the linear trends, those of the second correction 
of Xp2, also have an s which departs consid- 
erably from the very closely grouped values as- 
sociated with the other points. This behavior 
suggests that three is the maximum number of 
parameters that can be evaluated by inversion 
in this configuration without data of better 
quality. 

Failure of convergence in Xp3 is in contrast 
with the results of Th2, where convergence of a 
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Fig. 1. Parameters h•, •, • of case Xp3, cor- 
rections 1 through 5, and case Xp2, correction 4, 
plotted against the parameter p•. /• and • are 
given in km/sec; h• is km; and p• is in g/cm 3. Each 
of these cases is a good solution. The arrow in- 
dicates parameters of case Xp3A, also a good 
solution, in which • agrees with Katz's refraction 
observations. 

four-variable problem is obtained with a virtu- 
ally identical data spectrum and configuration 
of layers. The difference in behavior between 
the two problems is probably due to scatter of 
the data in Xp3 which removes the sharpness 
of the unique minimum s value found by the in- 
version program in Th2. We also note that Brune 
and Doman [1963], using data of better qual- 
ity, have obtained inversion results on the Ca- 
nadian shield which delineate greater detail and 
complexity of layering than are possible with the 
New York-Pennsylvania data. These facts sug- 
gest that results obtained from the New York- 
Pennsylvania data do not represent absolute per- 
formanee limitations of this inversion method. 

On the contrary, our results are limited mainly 
by the input data. 

Presumably, any set of four parameters se- 
lected by drawing a vertical line that intersects 
the ]•, ]•, and h• curves and the p• axis in Figure 
1 would define an equally valid solution of the 
dispersion data from a statistical point of view. 
Therefore, by associating Katz's observation of 
the apparent velocity of Sn, 4.68 to 4.69 kin/ 
see with the parameter ]• in Figure 1, we ob- 
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TABLE 7. Comparison of Parameters of Crustal Models for the New York-Pennsylvania Area 

Katz, Milroy Profile 
(shear waves) 

Katz, Tahawus-west Profile Inversion of Rayleigh Wave 
(shear waves) Dispersion Data (case Xp3A) 

h• 36.3 4- 4.3 km 38.4 4- 3.6 km 38.6 km 

•, 3.61 q- 0.01 km/sec 3.62 :t= 0.03 km/sec 3.64 km/sec 
p• ...... 0.866p2 

•2 4.69 4- 0.03 km/sec 4.68 q- 0.02 km/sec 4.685 km/sec (chosen) 
Mantle No information No information Low shear velocity 

heterogeneity channel required 

tain a model which agrees well with surface wave 
and body wave data. The corresponding abscissa, 
p• -- 2.86 g/cm, is identified by the arrow labeled 
case Xp3A in Figure 1. Values of 
3.64 km/sec and 38.6 km, respectively, which 
correspond to Xp3A in Figure i are in very 
good agreement with Katz's values, as shown in 
Table 7. Therefore, the density ratio p•/p• -- 
0.866, obtained without reference to gravity ob- 
servations, represents the best agreement be- 
tween refraction results and the surface wave 

data. This density ratio, though not precisely 
measured, is in good agreement with the result 
p• • 2.84, p2 -- 3.27, or p•/p2- 0.869 obtained 
by Worzel and Shutbet [1955] from analysis of 
gravity observations. 

Figure 2 shows that Xp3A does indeed fit the 
data of paper I in a satisfactory way, as in- 
ferred from Figure 1. For Xp3A, s -- 0.040 km/ 
sec, which is satisfactory in comparison with 
other solutions obtained in Xpl, Xp2, and Xp3. 
From Figure 2, Xp3A appears to be in much 
better agreement with the data than case 8123 

(the final solution offered in paper I) for which 
we now calculate s -- 0.057 km/sec. Table 8 
gives the complete list of parameters of case 
Xp3A used in calculating the corresponding the- 
oretical curves in Figure 2. In Xp3A, a• and a• 
were chosen to be consistent with Katz's com- 

pressional velocity data. The parameters of the 
mantle layers are those used by Dorman et al. 
[1960]. Values of mantle shear wave velocity 
depend on data of Lehmann [1955, 1961], and 
the mantle density structure is interpolated from 
Bullen's model A [Bullen, 1947]. 

The crustal model Xp3A has the great advan- 
tage of simplicity. From experience with Xp3 
it is clear that the number of parameters needed 
to characterize a three-layered crust, the model 
assumed in paper I, cannot be evaluated 
uniquely from the present dispersion data even 
with information from Katz's refraction experi- 
ments. Thus the present inversion method has 
permitted us to estimate realistically the amount 
of structural information which can be deduced 

uniquely from present body wave and surface 

5.5 

I0 20 T (seo) 50 40 50 
Fig. 2. Dispersion curves for case Xp3A and case 8123 plotted against dispersion 

data of Oliver et al. [1960] (solid circles). 
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TABLE 8. Parameters of Cases 8123 and Xp3A 

h, km •, km/sec ½, km/sec p, g/cm 3 

1.89 
25.11 

9.00 
84.00 

100.00 
Infinite 

Case 8123, s - 0.057 km/sec 
3.98 2 30 
6.15 3 55 
6.58 3 8O 
8.14 4 70 
8.17 4 30 
8.49 4 76 

Case Xp3A, s -- 0.040 km/sec 
38.6 6.15 3.64 2.86 
84.0 8.14 4.685 3.30 

100.0 8.17 4.30 3.44 
Infinite 8.49 4.76 3.53 

2.34 
2.817 
2. 922 

3.3O 
3.44 
3.53 

wave data and to provide satisfactory numerical 
values within this framework. The values of 

Table 8, therefore, may be regarded as the most 
detailed model of the crust and upper manfie 
that is justified by present data. The fact that 
Katz f•iled to identify consistent P•. or S2 and 
thereby the presence of a deeper high-speed 
crustal layer favors the one-l•yer crustal hy- 
pothesis. When further data become available, it 
may be necessary to revise this model. In partic- 
ular, short-period normal-mode data (T < 10 
see), not now available, should reflect the pres- 
ence of a surface low-velocity region in the 
upper crust.. 

Mutually consistent results with respect to 
crustal thickness and shear velocity distribution 
from the analysis of surface waves a•d refracted 
shear waves are not surprising, since the prop- 
erties of surface waves are determined mainly 
by the shear properties of the rocks. However, 
this calls further attention to the systematic dif- 
ference in crustal thickness obtained by the com- 
pressional and shear wave refraction methods. 
As noted by Katz and others, the shear wave 
travel-time curves often give a crustal thickness 
about 10 per cent greater than the compres- 
sional-wave travel-time curves. Katz's hypothe- 
sis that the gradient of compressional velocity 
with respect to depth is algebraically greater 
than the gradient of shear velocity with respect 
to depth is a reasonable explanation of the facts. 
The present analysis of surface waves yields no 
evidence of the existence of small velocity gradi- 
ents in the crust. 

The inverse of the slopes of the curves in Fig- 
ure i are a measure of the relative precision 

with which the various parameters are deter- 
mined when a particular solution is selected 
from the linear family of surface wave solutions. 
Further insight into the relationships expressed 
in Figure i is obtained from the partial deriva- 
tive relationships shown in Figure 3. The partial 
derivatives from which these curves were drawn 

were computed as indicated by (3). Thus each 
curve gives, as a function of period, the phase 
velocity increment in kilometers per second 
which would be produced by a 10 per cent in- 
crement in the corresponding parameter. The 
distribution of the experimental data points 
along the period axis is indicated by the ar- 
rows at the bottom of the figure. • is clearly 
the most significant and well determined of the 
four variables, as is shown by the height of 
curve 2 s•d the concentration of data points 
in the region of its maximum, as well as by the 
small slope of the • curve in Figure 1. Curve 
1, Figure 3, shows that the distribution of ex- 
perimental data points is favorable for the de- 
termination of crustal thickness, although the 
height of curve 1 is somewhat low, with respect 
to curves 2 and 4, for precise determination. 
Curve 3 is relatively low throughout, and it de- 
creases rapidly toward the short periods where 

0.1 

0.01 
15 
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Fig. 3. Phase velocity increment in kilometers 
per second versus period in seconds for hypotheti- 
cal changes of 10 per cent in the active parameters 
of case Xp3, first correction. Curve 1,--0.1 h• 
•c/•h•; curve 2, 0.1/?• •)c/•l?l; curve 3, -- 0.1pl 
•)c/•p•; curve 4, 0.1/•.• •)c/•i•2. 



5240 DORMAN AND EWING 

most of the experimental data are concentrated. 
Therefore, p is determined with relatively poor 
precision. Figure 3 suggests that additional data 
for periods between 30 and 50 seconds would 
improve the estimate of p•. Clearly a unique in- 
terpretation in terms of more layers in the same 
depth range can only be obtained if the experi- 
mental data contain more information in the 

form of reduced scatter, broader frequency cov- 
erage, and additional higher modes. 

Because of the similarity in the configuration 
of the layers in problems Th2 •nd Xp3, the 
curves of Figure 3, based on Xp3, apply very 
nearly to Th2 as well. Therefore, by comparing 
the residuals and the corresponding configuration 
of layers in Table 2 with the curves of Figure 3, 
one can examine the operation of the inversion 
program and g•in some insight into the effects 
of the various parameters. 

CONCLIJSIONS 

Fitting curves by least mean squares with an 
electronic computer is a useful technique for ob- 
taining the best-fitting set of values for elastic 
parameters of a layered earth model with 
respect to particular phase velocity dispersion 
data for seismic surface waves. This method 

has been applied to the problem of crust-mantle 
structure in the New York-Pennsylvania area 
by reinterprefing the Rayleigh wave dispersion 
data of Oliver, Kovach, and Dorman. Related 
seismic refraction data and near-earthquake data 
were used concurrenfiy. The calculations show 
that the surface wave dispersion data are mutu- 
ally consistent with velocity structures for the 
area derived by Katz from seismic refraction 
and by Lehmann from travel-time studies of 
nearby earthquakes. In addition, the density 
calculated by seismic inversion is consistent 
with Worzel and Shurbet's results that were 

based on gravity data and the assumption of 
isostatic compensation. A summary of results 
to date on shear velocity and density structure 
in the area is given in Table 7. Table 8 gives a 
complete list of the parameters of case Xp3A, 
the model offered as the best current solution of 

pertinent surface wave and body wave data. 
Figure 2 shows the good agreement between 
the dispersion data of Oliver, Kovach, and 
Dorman and the dispersion curve for case Xp3A. 

Questions concerning the uniqueness of a 
particular solution or the amount of informa- 

tion about structure obtainable from certain 

data can be answered quickly by experimenta- 
tion with various configurations of layers by 
taking advantage of high-speed computers. Cal- 
culated partial derivatives, sqch as those shown 
in Figure 3, are valuable for promoting the un- 
derstanding of the functional relations between 
dispersion data and a corresponding layered 
structure. The variable parameters can then be 
evaluated rapidly by calculation. The conven- 
ience and power of the least-squares inversion 
method has enabled us to find a solution fitting 
all available data on the New York-Pennsylvania 
area. It is simpler and it fits the data better 
than previous solutions. 

An increase in the number of modes in which 

experimental data are available, a broadening of 
the spectrum in each mode, and a decrease in 
the scatter of the data are factors which im- 
prove the performance of the inversion calcula- 
tion. When data of better quality than the New 
York-Pennsylvania data are available, a more 
detailed structural interpretation, covering a 
greater range of depths, can be obtained by 
numerical inversion. 
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